

 [image: cover]

 Phoebe Parry
Dive into iOS

BookRix GmbH & Co. KG
81669 Munich

Introduction
Introduction

Mobile applications are one of the fastest growing segments of the technology industry, and the iPhone and iPad have been at the forefront of the mobile revolution. Developing applications for these platforms opens the door to a vast number of mobile users. Unfortunately, the variety of underlying technologies can be overwhelming for newcomers to iOS, and the 1,500+ official help documents available from the iOS Developer Library don’t exactly provide an approachable introduction to the platform. The goal of iOS Succinctly is to provide a concise overview of the iOS landscape.

iOS and the iOS SDK
iOS and the iOS SDK

iOS is the operating system behind iPhone and iPad applications. It takes care of the low-level system tasks like managing memory, opening and closing applications, and rendering pixels to the screen. On top of this core operating system rests a collection of frameworks, which are C and Objective-C libraries that provide reusable solutions to common programming problems. For example, the UIKit Framework defines classes for buttons, text fields, and several other user interface components. Instead of implementing your own buttons from the ground up, you can leverage the existing UIButton class.

Together, the core operating system and these higher-level frameworks compose the iOS software development kit (SDK). The goal of the iOS SDK is to let you focus on developing what your application does instead of getting bogged down by how it does it. The SDK is divided into layers based on what level of abstraction they provide. These layers, along with some of the popular frameworks they contain, are shown in the following diagram:

[image:]

Figure 1: Layers of the iOS SDK frameworks

As a developer, you’ll rarely interact directly with the Core OS layer. Most of the time, you’ll be working with the frameworks in the Cocoa Touch, Media, or Core Services layers and let them handle the low-level operating system tasks for you.

About iOS Succinctly
About iOS Succinctly

iOS Succinctly is the second half of a two-part series on iPhone and iPad app development. The first book, Objective-C Succinctly, covered the Objective-C language and the core data structures used by virtually all applications. With this in mind, iOS Succinctly assumes that you’re already comfortable with Objective-C and have at least a basic familiarity with the Xcode integrated development environment (IDE).

This book begins by exploring the basic design patterns behind iOS development. We’ll learn how to create a user interface using a very simple, one-scene application. Then, we’ll expand this knowledge to a more complicated multi-scene application. By this point, you should have a solid grasp of the iOS workflow. The remaining chapters look at common development tasks like accessing files, localizing assets for different audiences, and playing sounds.

The sample code in this book can be downloaded from https://bitbucket.org/syncfusion/ios-succinctly.

Chapter 1 Hello, iOS!
Chapter 1 Hello, iOS!

In this chapter, we’ll introduce the three main design patterns underlying all iOS app development: model-view-controller, delegate objects, and target-action. The model-view-controller pattern is used to separate the user interface from its underlying data and logic. The delegate object pattern makes it easy to react to important events by abstracting the handling code into a separate object. Finally, the target-action pattern encapsulates a behavior, which provides a very flexible way to perform actions based on user input.

We’ll talk about all of these patterns in more detail while we’re building up a simple example application. This will also give us some experience with basic user interface components like buttons, labels, and text fields. By the end of this chapter, you should be able to configure basic layouts and capture user input on your own.

Creating a New Project
Creating a New Project

First, we need to create a new Xcode project. Open Xcode and navigate to File New Project, or press Cmd+Shift+N to open the template selection screen. In this chapter, we’ll be creating the simplest possible program: a Single View Application. Select the template, and then click Next.

[image:]

Figure 2: Selecting the Single View Application template

Use HelloWorld for the Product Name, anything you like for Organization Name, and edu.self for the Company Identifier. Make sure that Devices is set to iPhone and that the Use Storyboards and Use Automatic Reference Counting options are selected:

[image:]

Figure 3: Configuration for our HelloWorld app

Then, choose a location to save the file, and you’ll have your very first iOS app to experiment with.

Compiling the App
Compiling the App

As with the command-line application from Objective-C Succinctly, you can compile the project by clicking the Run button in the upper-left corner of Xcode or using the Cmd+R keyboard shortcut. But, unlike Objective-C Succinctly, our application is a graphical program that is destined for an iPhone. Instead of simply compiling the code and executing it, Xcode launches it using the iOS Simulator application. This allows us to see what our app will look like on the iPhone without having to upload it to an actual device every time we make the slightest change. The template we used is a blank project, so you’ll just see a white screen when you run it:

[image:]

Figure 4: Running the HelloWorld project in the iOS Simulator

While we can’t really tell with our current app, the simulator is a pretty detailed replica of the actual iPhone environment. You can click the home button, which will display all the apps that we’ve launched in the simulator, along with a few built-in ones. As we’ll see in a moment, this lets us test the various states of our application.

App Structure Overview
App Structure Overview

Before we start writing any code, let’s take a brief tour of the files provided by the template. This section introduces the most important aspects of our HelloWorld project.

main.m

As with any Objective-C program, an application starts in the main() function of main.m. The main.m file for our HelloWorld project can be found in the Supporting Files folder in Xcode’s Project Navigator panel. The default code provided by your template should look like the following:

#import UIKit/UIKit.h

#import "AppDelegate.h"

int main(int argc, char *argv[]) {

 @autoreleasepool {

 return UIApplicationMain(argc,

 argv,

 nil,

 NSStringFromClass([AppDelegate class]));

 }

}

This launches your application by calling the UIApplicationMain() function, and passing [AppDelegate class] as the last argument tells the application to transfer control over to our custom AppDelegate class. We’ll discuss this more in the next section.

For most applications, you’ll never have to change the default main.m—any custom setup can be deferred to the AppDelegate or ViewController classes.

AppDelegate.h and AppDelegate.m

The iOS architecture relies heavily on the delegate design pattern. This pattern lets an object transfer control over some of its tasks to another object. For example, every iOS application is internally represented as a UIApplication object, but developers rarely create a UIApplication instance directly. Instead, the UIApplicationMain() function in main.m creates one for you and points it to a delegate object, which then serves as the root of the application. In the case of our HelloWorld project, an instance of the custom AppDelegate class acts as the delegate object.

This creates a convenient separation of concerns: the UIApplication object deals with the nitty-gritty details that happen behind the scenes, and it simply informs our custom AppDelegate class when important things happen. This gives you as a developer the opportunity to react to important events in the app’s life cycle without worrying about how those events are detected or processed. The relationship between the built-in UIApplication instance and our AppDelegate class can be visualized as follows:

[image:]

Figure 5: Using AppDelegate as the delegate object for UIApplication

Recall from Objective-C Succinctly that a protocol declares an arbitrary group of methods or properties that any class can implement. Since a delegate is designed to take control over an arbitrary set of tasks, this makes protocols the logical choice for representing delegates. The UIApplicationDelegate protocol declares the methods that a delegate for UIApplication should define, and we can see that our AppDelegate class adopts it in AppDelegate.h:

@interface AppDelegate : UIResponder UIApplicationDelegate

This is what formally turns our AppDelegate class into the delegate for the main UIApplication instance. If you open AppDelegate.m, you’ll also see implementation stubs for the following methods:

- (BOOL)application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions;

- (void)applicationWillResignActive:(UIApplication *)application;

- (void)applicationDidEnterBackground:(UIApplication *)application;

- (void)applicationWillEnterForeground:(UIApplication *)application;

- (void)applicationDidBecomeActive:(UIApplication *)application;

- (void)applicationWillTerminate:(UIApplication *)application;

These methods are called by UIApplication when certain events occur internally. For example, the application:didFinishLaunchingWithOptions: method is called immediately after the application launches. Let’s take a look at how this works by adding an NSLog() call to some of these methods:

- (BOOL)application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 NSLog(@"Application has been launched");

 return YES;

}

- (void)applicationDidEnterBackground:(UIApplication *)application {

 NSLog(@"Entering background");

}

- (void)applicationWillEnterForeground:(UIApplication *)application {

 NSLog(@"Entering foreground");

}

Now, when you compile the project and run it in the iOS Simulator, you should see the Application has been launched message as soon as it opens. You can click the simulator’s home button to move the application to the background, and click the application icon on the home screen to move it back to the foreground. Internally, clicking the home button makes the UIApplication instance call applicationDidEnterBackground::

[image:]

Figure 6: Moving the HelloWorld application to the background

This should display the following messages in Xcode’s output panel:

[image:]

Figure 7: Xcode output after clicking the home button in the iOS Simulator

These NSLog() messages show us the basic mechanics behind an application delegate, but in the real world, you would write custom setup and cleanup code to these methods. For example, if you were creating a 3-D application with OpenGL, you would need to stop rendering content and free up any associated resources in the applicationDidEnterBackground: method. This makes sure that your application isn’t hogging memory after the user closes it.

To summarize, our AppDelegate class serves as the practical entry point into our application. Its job is to define what happens when an application opens, closes, or goes into a number of other states. It accomplishes this by acting as a delegate for the UIApplication instance, which is the internal representation of the entire application.

ViewController.h and ViewController.m

Outside of the application delegate, iOS applications follow a model-view-controller (MVC) design pattern. The model encapsulates the application data, the view is the graphical representation of that data, and the controller manages the model/view components and processes user input.

[image:]

Figure 8: The model-view-controller pattern used by iOS applications

Model data is typically represented as files, objects from the CoreData framework, or custom objects. The application we’re building in this chapter doesn’t need a dedicated model component; we’ll be focusing on the view and controller aspects of the MVC pattern until the next chapter.

View components are represented by the UIView class. Its UIButton, UILabel, UITextField and other subclasses represent specific types of user interface components, and UIView itself can act as a generic container for all of these objects. This means that assembling a user interface is really just a matter of configuring UIView instances. For our example, the ViewController automatically creates a root UIView instance, so we don’t need to manually instantiate one.

And, as you probably could have guessed, the ViewController class is the custom controller for our project. Its job is to lay out all of the UI components, handle user input like button clicks, text field input, etc., and update the model data when necessary. You can think of it as a scene manager.

Controllers typically inherit from the UIViewController class, which provide the basic functionality required of any view controller. In our HelloWorld program, the storyboard (discussed in the next section) automatically instantiates the root ViewController class for us.

While the AppDelegate is the programmatic entry point into the application, our ViewController is the graphical root of the project. The viewDidLoad method in ViewController.m is called after the root UIView instance is loaded. This is where we can create new user interface components and add them to the scene (we’ll do this in a moment).

MainStoryboard.storyboard

The last file we need to take a look at is MainStoryboard.storyboard. This is a special type of file that stores the entire flow of your application and lets you edit it visually instead of programmatically. Selecting it in Xcode’s Project Navigator will open up the Interface Builder instead of the normal source code editor, which should look something like this:

[image:]

Figure 9: The Interface Builder of our HelloWorld project

The large white area is called a scene, and it represents a screen worth of content on the iPhone. This is what you’re seeing when you compile and run the empty template, and it’s where we can visually create a layout by dragging and dropping user interface components. The arrow pointing into the left of the scene tells us that this is the root scene for our app. Underneath it is the dock, which contains icons representing relevant classes and other entities. We’ll see why this is important once we start making connections between graphical components and our custom classes.

Before we start adding buttons and text fields, let’s take a moment to examine the left-most yellow icon in the dock. First, make sure the Utilities panel is open by toggling the right-most button in the View selection tab:

[image:]

Figure 10: Displaying the Utilities panel (highlighted in orange)

Then, click the yellow icon in the dock to select it:

[image:]

Figure 11: Selecting the View Controller icon

This icon represents the controller for the scene. For our project, this is an instance of the custom ViewController class. We can verify this by selecting the Identity inspector in the Utilities panel, which will display the class associated with the controller:

[image:]

Figure 12: The Identity inspector in the Utilities panel

That Class field creates a connection between the storyboard’s graphical interface and our source code. This is important to keep in mind when we start accessing user interface components from our classes.

It’s also worth taking a look at the Attributes inspector, which is the next tab over in the Utilities panel:

[image:]

Figure 13: The Attributes inspector for the controller

That Is Initial View Controller check box is what makes this the root scene. Every app needs to have exactly one root scene, otherwise iOS won’t know how to launch your application. If you clear the box, the arrow pointing into the scene will disappear, and you’ll get the following message when you try to compile the project:

[image:]

Figure 14: Error message from a missing root scene

Make sure Is Initial View Controller is selected before moving on.

Buy "Dive into iOS" in your preferred e-book store and continue reading:

Amazon

AppleiBookstore

buchhandel.de

ebook.de

Thalia

Weltbild

Enjoy your reading!

OEBPS/images/146265038933799131_1.jpg
._.*_____*

Model ViewModel View

OEBPS/images/146265038923241938_9.jpg
.. Other

ViewModels
ViewModel .

OEBPS/images/cover.jpeg

OEBPS/images/146265038971828143_5.jpg
ViewModel View

OEBPS/images/146265038979453538_6.jpg
Hello, Knockout.js

John's Shopping Cart

OEBPS/images/146265038988225965_7.jpg

OEBPS/images/146265038937317763_8.jpg
ViewModel Computed Observable

OEBPS/images/146265038964373487_10.jpg
v_Outlets

Chssoue (% Wi Vew e, ©
(odogae ————+{(Masterview.._®

OEBPS/images/146265038917098100_1.jpg
._.*_____*

Model ViewModel View

OEBPS/images/146265038934743432_2.jpg
ViewModel View

OEBPS/images/1462650389750615_3.jpg
ViewModel View

OEBPS/images/146265038939401676_4.jpg
Hello, Knockout.js

Bil's Shopping Cart

OEBPS/images/14626503897555333_1.jpg
._.*_____*

Model ViewModel View

OEBPS/images/146265038928139382_2.jpg
ViewModel View

OEBPS/images/146265038990138280_1.jpg
._.*_____*

Model ViewModel View

