

 [image: cover]

 Ellis Kirk
Dive into Java Script

BookRix GmbH & Co. KG
81669 Munich

Introduction
Introduction

This book is not about JavaScript design patterns or implementing an object-oriented paradigm with JavaScript code. It was not written to distinguish the good features of the JavaScript language from the bad. It is not meant to be a complete reference guide. It is not targeted at people new to programming or those completely new to JavaScript. Nor is this a cookbook of JavaScript recipes. Those books have been written.

It was my intention to write a book that gives the reader an accurate JavaScript worldview through an examination of native JavaScript objects and supporting nuances: complex values, primitive values, scope, inheritance, the head object, etc. I intend this book to be a short and digestible summary of the ECMA-262, Edition 3 specification, focused on the nature of objects in JavaScript.

If you are a designer or developer who has only used JavaScript under the mantle of libraries (such as jQuery, Prototype, etc.), it is my hope that the material in this book will transform you from a JavaScript library user into a JavaScript developer.

Why did I write this book?
Why did I write this book?

First, I must admit that I wrote this book for myself. Truth be told, I crafted this material so I could drink my own Kool-Aid and always remember what it tastes like. In other words, I wanted a reference written in my own words used to jog my memory as needed. Additionally:

	Libraries facilitate a "black box" syndrome that can be beneficial in some regards but detrimental in others. Things may be completed fast and efficiently, but you have no idea how or why. And the how and why really matter when things go wrong or performance becomes an issue. The fact is that anyone who intends to implement a JavaScript library or framework when building a web application (or just a good sign-up form) ought to look under the hood and understand the engine. This book was written for those who want to pop the hood and get their hands dirty in JavaScript itself.
	Mozilla has provided the most up-to-date and complete reference guide for JavaScript 1.5. I believe what is missing is a digestible document, written from a single point of view, to go along with their reference guide. It is my hope that this book will serve as a "what you need to know" manual for JavaScript values, detailing concepts beyond what the Mozilla reference covers.
	Version 1.5 of JavaScript is going to be around for a fair amount of time, but as we move toward the new additions to the language found in ECMA Edition 5, I wanted to document the cornerstone concepts of JavaScript that will likely be perennial.
	Advanced technical books written about programing languages are often full of monolithic code examples and pointless meanderings. I prefer short explanations that get to the point, backed by real code that I can run instantly. I coined a term, "technical thin-slicing," to describe what I am attempting to employ in this book. This entails reducing complex topics into smaller, digestible concepts taught with minimal words and backed with comprehensive and focused code examples.
	Most JavaScript books worth reading are three inches thick. Definitive guides like David Flanagan’s certainly have their place, but I wanted to create a book that hones in on the important stuff without being exhaustive.

Who should read this book?
Who should read this book?

This book is targeted at two types of people. The first is an advanced beginner or intermediate JavaScript developer who wishes to solidify his or her understanding of the language through an in-depth look at JavaScript objects. The second type is a JavaScript library veteran who is ready to look behind the curtain. This book is not ideal for newbies to programming, JavaScript libraries, or JavaScript itself.

Why JavaScript 1.5 and ECMA-262 Edition 3?
Why JavaScript 1.5 and ECMA-262 Edition 3?

In this book, I focus on version 1.5 of JavaScript (equivalent to ECMA-262 Edition 3) because it is the most widely implemented version of JavaScript to date. The next version of this book will certainly be geared toward the up-and-coming ECMA-262 Edition 5.

Why didn't I cover the Date(), Error(), or RegEx() objects?
Why didn't I cover the Date(), Error(), or RegEx() objects?

Like I said, this book is not an exhaustive reference guide to JavaScript. Rather, it focuses on objects as a lens through which to understand JavaScript. So I have decided not to cover the Date(), Error(), or RegEx() objects because, as useful as they are, grasping the details of these objects will not make or break your general understanding of objects in JavaScript. My hope is that you simply apply what you learn here to all objects available in the JavaScript environment.

Preface
Preface

Before you begin, it is important to understand various styles employed in this book. Please do not skip this section because it contains important information that will aid you as you read the book.

More code, less words
More code, less words

Please examine the code examples in detail. The text should be viewed as secondary to the code itself. It is my opinion that a code example is worth a thousand words. Do not worry if you’re initially confused by explanations. Examine the code. Tinker with it. Reread the code comments. Repeat this process until the concept being explained becomes clear. I hope you achieve a level of expertise such that well-documented code is all you need to understand a programming concept.

Exhaustive code and repetition
Exhaustive code and repetition

You will probably curse me for repeating myself and for being so comprehensive with my code examples. And while I might deserve it, I prefer to err on the side of being exact, verbose, and repetitive, rather than make false assumptions some authors often make about their readers. Yes, both approaches can be annoying depending upon what knowledge the author brings to the subject, but they can also serve a useful purpose for those who want to learn a subject in detail.

Color-coding conventions
Color-coding conventions

Code will be colored using the normal JavaScript syntax highlighting in Visual Studio. This will help you understand the code, but you will be just fine reading this material on a monochrome e-book reader such as the Kindle Touch.

!DOCTYPE htmlhtml lang="en"bodyscript

 // This is a comment about a specific part of the code.

 var foo = 'calling out this part of the code';

/script/body/html

In addition to syntax highlighting the code, the text in this book is colored so as to distinguish between JavaScript words and keywords, JavaScript code, and regular text. The following excerpt from the book demonstrates this coloring semantic.

“Consider that the cody object created from the Object() constructor function is not really different from a string object created via the String() constructor function. To drive this fact home, examine and contrast the following code:”

Notice the use of gray italicized text for code references, orange text for JavaScript words and keywords, and regular black text for everything in-between.

Code examples
Code examples

This book relies heavily on code examples to express JavaScript concepts. The code samples are available at https://bitbucket.org/syncfusion/javascript-succinctly.

The code samples are provided as individual HTML files. A Visual Studio 2010 project is also provided for easy navigation. You can select any file, right-click, and select the View in Browser option to test the code.

[image:]

The name of the sample file is always included above its code block in the format Sample: $file-name.html.

Before reading this book, make sure you are comfortable with the usage and purpose of console.log. You can open the JavaScript console window in different browsers using the following keyboard shortcuts.

[image:]

I encourage you to download the code and follow along. I authored this book counting on the fact that you will need to tinker with the code while you are reading and learning.

Chapter 1 JavaScript Objects
Chapter 1 JavaScript Objects

Creating objects

In JavaScript, objects are king: Almost everything is an object or acts like an object. Understand objects and you will understand JavaScript. So let's examine the creation of objects in JavaScript.

An object is just a container for a collection of named values (aka properties). Before we look at any JavaScript code, let's first reason this out. Take myself, for example. Using plain language, we can express in a table, a "cody":

[image:]

The word "cody" in the table is just a label for the group of property names and corresponding values that make up exactly what a cody is. As you can see from the table, I am living, 33, and a male.

JavaScript, however, does not speak in tables. It speaks in objects, which are similar to the parts contained in the "cody” table. Translating the cody table into an actual JavaScript object would look like this:

Sample: sample1.html

!DOCTYPE htmlhtml lang="en"bodyscript

 // Create the cody object

 var cody = new Object();

 // then fill the cody object with properties (using dot notation).

 cody.living = true;

 cody.age = 33;

 cody.gender = 'male';

 console.log(cody); // Logs Object {living = true, age = 33, gender = 'male'}

/script/body/html

Keep this at the forefront of your mind: objects are really just containers for properties, each of which has a name and a value. This notion of a container of properties with named values (i.e. an object) is used by JavaScript as the building blocks for expressing values in JavaScript. The cody object is a value which I expressed as a JavaScript object by creating an object, giving the object a name, and then giving the object properties.

Up to this point, the cody object we are discussing has only static information. Since we are dealing with a programing language, we want to program our cody object to actually do something. Otherwise, all we really have is a database akin to JSON. In order to bring the cody object to life, I need to add a property method. Property methods perform a function. To be precise, in JavaScript, methods are properties that contain a Function() object, whose intent is to operate on the object the function is contained within.

If I were to update the cody table with a getGender method, in plain English it would look like this:

[image:]

Using JavaScript, the getGender method from the updated cody table would look like so:

Sample: sample2.html

!DOCTYPE htmlhtml lang="en"bodyscript

 var cody = new Object();

 cody.living = true;

 cody.age = 33;

 cody.gender = 'male';

 cody.getGender = function () { return cody.gender; };

 console.log(cody.getGender()); // Logs 'male'.

/script/body/html

The getGender method, a property of the cody object, is used to return one of cody’s other property values: the value "male" stored in the gender property. What you must realize is that without methods, our object would not do much except store static properties.

The cody object we have discussed thus far is what is known as an Object() object. We created the cody object using a blank object that was provided to us by invoking the Object() constructor function. Think of constructor functions as a template or cookie cutter for producing predefined objects. In the case of the cody object, I used the Object() constructor function to produce an empty object which I named cody. Because cody is an object constructed from the Object() constructor, we call cody an Object() object. What you really need to understand, beyond the creation of a simple Object() object like cody, is that the majority of values expressed in JavaScript are objects (primitive values like "foo", 5, and true are the exception but have equivalent wrapper objects).

Consider that the cody object created from the Object() constructor function is not really different from a string object created via the String() constructor function. To drive this fact home, examine and contrast the following code:

Sample: sample3.html

!DOCTYPE htmlhtml lang="en"bodyscript

 var myObject = new Object(); // Produces an Object() object.

 myObject['0'] = 'f';

 myObject['1'] = 'o';

 myObject['2'] = 'o';

 console.log(myObject); // Logs Object { 0="f", 1="o", 2="o"}

 var myString = new String('foo'); // Produces a String() object.

 console.log(myString); // Logs foo { 0="f", 1="o", 2="o"}

/script/body/html

As it turns out, myObject and myString are both . . . objects! They both can have properties, inherit properties, and are produced from a constructor function. The myString variable containing the 'foo' string value seems to be as simple as it goes, but amazingly it’s got an object structure under its surface. If you examine both of the objects produced you will see that they are identical objects in substance but not in type. More importantly, I hope you begin to see that JavaScript uses objects to express values.

Notes

You might find it odd to see the string value 'foo' in object form because typically a string is represented in JavaScript as a primitive value (e.g., var myString = 'foo';). I specifically used a string object value here to highlight that anything can be an object, including values that we might not typically think of as an object (e.g., string, number, Boolean). Also, I think this helps explain why some say that everything in JavaScript can be an object.

JavaScript bakes the String() and Object() constructor functions into the language itself to make the creation of a String() object and Object() object trivial. But you, as a coder of the JavaScript language, can also create equally powerful constructor functions. In the following sample, I demonstrate this by defining a non-native custom Person() constructor function so that I can create people from it.

Sample: sample4.html

!DOCTYPE htmlhtml lang="en"bodyscript

 // Define Person constructor function in order to create custom Person() objects later.

 var Person = function (living, age, gender) {

 this.living = living;

 this.age = age;

 this.gender = gender;

 this.getGender = function () { return this.gender; };

 };

 // Instantiate a Person object and store it in the cody variable.

 var cody = new Person(true, 33, 'male');

 console.log(cody);

 /* The String() constructor function that follows, having been defined by JavaScript, has the same pattern. Because the string constructor is native to JavaScript, all we have to do to get a string instance is instantiate it. But the pattern is the same whether we use native constructors like String() or user-defined constructors like Person(). */

 // Instantiate a String object stored in the myString variable.

 var myString = new String('foo');

 console.log(myString);

/script/body/html

The user-defined Person() constructor function can produce Person objects, just as the native String() constructor function can produce string objects. The Person() constructor is no less capable, and is no more or less malleable, than the native String() constructor or any of the native constructors found in JavaScript.

Remember how the cody object we first looked at was produced from an Object(). It’s important to note that the Object() constructor function and the new Person() constructor shown in the previous code example can give us identical outcomes. Both can produce an identical object with the same properties and property methods. Examine the two sections of code that follow, showing that codyA and codyB have the same object values even though they are produced in different ways.

Sample: sample5.html

!DOCTYPE htmlhtml lang="en"bodyscript

 // Create a codyA object using the Object() constructor.

 var codyA = new Object();

 codyA.living = true;

 codyA.age = 33;

 codyA.gender = 'male';

 codyA.getGender = function () { return codyA.gender; };

 console.log(codyA); // Logs Object {living=true, age=33, gender="male", ...}

 /* The same cody object is created below, but instead of using the native Object() constructor to create a one-off cody, we first define our own Person() constructor that can create a cody object (and any other Person object we like) and then instantiate it with "new". */

 var Person = function (living, age, gender) {

 this.living = living;

 this.age = age;

 this.gender = gender;

 this.getGender = function () { return this.gender; };

 };

 var codyB = new Person(true, 33, 'male');

 console.log(codyB); // Logs Object {living=true, age=33, gender="male", ...}

/script/body/html

The main difference between the codyA and codyB objects is not found in the object itself, but in the constructor functions used to produce the objects. The codyA object was produced using an instance of the Object() constructor. The Person() constructor produced codyB, but can also be used as a powerful, centrally defined object "factory" to be used for creating more Person() objects. Crafting your own constructors for producing custom objects also sets up prototypal inheritance for Person() instances.

Both solutions resulted in the same complex object being created. It’s these two patterns that are most commonly used for constructing objects.

JavaScript is really just a language that is prepackaged with a few native object constructors used to produce complex objects which express a very specific type of value (e.g., numbers, strings, functions, objects, arrays, etc.), as well as the raw materials via Function() objects for crafting user-defined object constructors (e.g., Person()). The end result—no matter the pattern for creating the object—is typically the creation of a complex object.

Understanding the creation, nature, and usage of objects and their primitive equivalents is the focus of the rest of this book.

JavaScript constructors create and return object instances
JavaScript constructors create and return object instances

The role of a constructor function is to create multiple objects that share certain qualities and behaviors. Basically, a constructor function is a cookie cutter for producing objects that have default properties and property methods.

If you said, "A constructor is nothing more than a function," then I would reply, "You are correct—unless that function is invoked using the new keyword." (For example, new String('foo')). When this happens, a function takes on a special role, and JavaScript treats the function as special by setting the value of this for the function to the new object that is being constructed. In addition to this special behavior, the function will return the newly created object (i.e. this) by default instead of the value false. The new object that is returned from the function is considered to be an instance of the constructor function that constructs it.

Consider the Person() constructor again, but this time read the comments in the following code sample carefully, as they highlight the effect of the new keyword.

Sample: sample6.html

!DOCTYPE htmlhtml lang="en"bodyscript

 /* Person is a constructor function. It was written with the intent of being used with the new keyword. */

 var Person = function Person(living, age, gender) {

 // "this" below is the new object that is being created (i.e. this = new Object();)

 this.living = living;

 this.age = age;

 this.gender = gender;

 this.getGender = function () { return this.gender; };

 // When the function is called with the new keyword, "this" is returned instead of false.

 };

 // Instantiate a Person object named cody.

 var cody = new Person(true, 33, 'male');

 // cody is an object and an instance of Person()

 console.log(typeof cody); // Logs object.

 console.log(cody); // Logs the internal properties and values of cody.

 console.log(cody.constructor); // Logs the Person() function.

/script/body/html

The sample6.html code leverages a user-defined constructor function (i.e. Person()) to create the cody object. This is no different from the Array() constructor creating an Array() object (e.g., new Array()) in the following code.

Sample: sample7.html

!DOCTYPE htmlhtml lang="en"bodyscript

 // Instantiate an Array object named myArray.

 var myArray = new Array(); // myArray is an instance of Array.

 // myArray is an object and an instance of the Array() constructor.

 console.log(typeof myArray); // Logs object! What? Yes, arrays are a type of object.

 console.log(myArray); // Logs []

 console.log(myArray.constructor); // Logs Array()

/script/body/html

Buy "Dive into Java Script" in your preferred e-book store and continue reading:

Amazon

AppleiBookstore

buchhandel.de

ebook.de

Thalia

Weltbild

Enjoy your reading!

OEBPS/images/14626503698840714_2.jpg
cody object

property property value
living True
age 33
gender Male
getGender retum the value of gender

OEBPS/images/146265036912395350_1.jpg
property property value
living True
age 33
gender Male

OEBPS/images/146265036935995634_2.jpg

OEBPS/images/cover.jpeg
Ellis ! \Qe

OEBPS/images/146265036884986148_1.jpg
property property value
living True
age 33
gender Male

