

 [image: cover]

 Bill Porras
Dive into Entity Framework Code First

BookRix GmbH & Co. KG
81669 Munich

Table Of Contents
Table of Contents

Chapter 1 Setting Up
Chapter 2 Domain Model
Chapter 3 Database
Chapter 4 Getting Data from the Database
Chapter 5 Writing Data to the Database
Chapter 6 Spatial Data Types
Chapter 7 Handling Events
Chapter 8 Extending Entity Framework
Chapter 9 Exposing Data to the World
Chapter 10 Tracing and Profiling
Chapter 11 Performance Optimizations
Chapter 12 Common Pitfalls
Appendix A Working with Other Databases
Appendix B Additional References

Introduction
Introduction

Object/Relational mappers (ORMs) exist to bridge a gap between object-oriented programming (OOP) and relational databases. At the expense of being less specific, ORMs abstract away database-specific technicalities and hide from you, the OOP developer, those scary SQL queries.

Entity Framework Code First is the latest edition of Microsoft’s flagship data access technology. It sits on the “classic” Entity Framework, which has existed since 2009. Entity Framework already offered two development models:

	Database first, which generated code from an existing database.
	Model first, which defined a conceptual model from which both the database and the code were generated.

Code First picks up where “classic” left off: starting by code and generating the database from it, which is known as a domain-driven design (DDD) approach. It also offers a much simpler and streamlined API, which has gained a great deal of well-deserved attention.

Since Entity Framework was first included in Visual Studio 2008 and the .NET Framework 3.5 SP1, and certainly object/relational mapping existed long before that, then why is there all this hype around Entity Framework Code First (EFCF)? Well, it seems that EFCF is the new cool kid on the block for a number of reasons:

	Easy to set up: you just pop up NuGet’s package manager and you’re done.
	Simple to use: there are no XML schemas to master, no base classes to inherit from, no arcane interfaces to implement, and it has a clean, tidy API. You just focus on the actual domain model and its characteristics, and forget about the persistence details, which is pretty much what domain driven design (DDD) is about.
	It sits on an API for database access that you can expect to see more support and improvement for by Microsoft.
	Because it is not tied to the regular .NET framework releases, new versions come out much more often.
	Microsoft hit the bull’s eye when it decided to release EFCF’s source code and to start accepting community requests and even pull requests: bugs are fixed more quickly, you can influence the features the product will have, and you have the chance to try out the latest improved functionality.

For those coming from “classic” Entity Framework, this means that you have to code your own entities by hand. There is no fancy designer here. This actually gives you more control over how things are generated, and it is not a bad thing.

You can make your own decision. Stick with me and let’s start exploring Entity Framework Code First.

Chapter 1 Setting Up
Chapter 1 Setting Up

Before We Start

Before you start using EFCF, you need to have its assemblies deployed locally. The distribution model followed by Microsoft and a number of other companies does not depend on old school Windows installers, but instead relies on new technologies such as NuGet and Git. We’ll try to make sense of each of these options in a moment, but before we get to that, make sure you have Visual Studio 2012 installed (any edition including Visual Web Developer Express will work), as well as SQL Server 2008 (any edition including Express) or higher. On SQL Server, create a new database called Succinctly.

Getting Entity Framework Code First From NuGet
Getting Entity Framework Code First From NuGet

NuGet is to .NET package management what Entity Framework is to data access. In a nutshell, it allows Visual Studio projects to have dependencies on software packages—assemblies, source code files, PowerShell scripts, etc.—stored in remote repositories. EFCF comes in its own assembly, which is deployed out-of-band between regular .NET releases. In order to install it to an existing project, first run the Package Manager Console from the Tools – Library Package Manager and enter the following command.

[image:]

This is by far the preferred option for deploying Entity Framework Code First.

[image:]

Tip: This will only work with an existing project, not on an empty solution.

Getting Entity Framework Code First From CodePlex
Getting Entity Framework Code First From CodePlex

The second option, for advanced users, is to clone the Entity Framework Code First repository on CodePlex, build the binaries yourself, and manually add a reference to the generated assembly.

First things first, let’s start by cloning the Git repository using your preferred Git client.

git clone https://git01.codeplex.com/entityframework.git

Next, build everything from the command line using the following two commands.

build /t:RestorePackages /t:EnableSkipStrongNames

build

You can also fire up Visual Studio 2012 and open the EntityFramework.sln solution file. This way, you can do your own experimentations with the source code, compile the debug version of the assembly, run the unit tests, etc.

Configuring the Database
Configuring the Database

Entity Framework is database-agnostic, but the standard version only includes providers for Microsoft technologies. This means only SQL Server 2005+, SQL Server Compact Edition, and SQL Server Express LocalDB are supported. The examples in this book will work on any of these editions. Make sure you have one of them installed and you have the appropriate administrative permissions.

Entity Framework decides on what connection to use by executing the following algorithm.

	If a connection string is passed in the DbContext’s constructor, then it will try to use that connection string with the default connection factory.
	If the parameter-less constructor is used, it will look for a connection string in the configuration file, where its name is the same as the context’s class.
	If no connection string is passed and no connection string with an appropriate name is found in the connection string, it will try to connect to a SQL Server instance named SQLEXPRESS, and a database with the same name as the context class, including namespace.

A connection factory is an implementation of IDbConnectionFactory that sits in a well-known location: Database.DefaultConnectionFactory. This instance can be explicitly set, and should be if a specific database engine requires it. This can be done either by code or by setting a value in the configuration file.

entityFramework

 defaultConnectionFactory

 type="System.Data.Entity.Infrastructure.SqlCeConnectionFactory, EntityFramework" /

/entityFramework

SQL Server

For connecting to the SQL Server, no special action is required. The default Database.DefaultConnectionFactory is already an instance of SqlConnectionFactory.

If you want to have a connection string in the configuration file, you should use the provider name “System.Data.SqlClient” as per the following example.

connectionStrings

 add name="Succinctly"

 connectionString="Data Source=.SQLEXPRESS;Integrated Security=SSPI;

 Initial Catalog=Succinctly;MultipleActiveResultSets=true"

 providerName="System.Data.SqlClient" /

/connectionStrings

SQL Server Compact Edition

SQL Server Compact Edition (SQLCE) is a small footprint, free and embedded database, which supports practically the same SQL syntax as its full featured sibling. If you want to use it, make sure you have the SQL Server Compact Edition installed; the download is available at http://www.microsoft.com/en-us/sqlserver/editions/2012-editions/compact.aspx.

[image:]

Tip: SQLCE will only accept a single connection at a time.

If you want to connect to SQLCE, you need to register a connection string using the System.Data.SqlServerCe.4.0 provider.

connectionStrings

 add name="Succinctly"

 connectionString="Data Source=Succinctly.sdf"

 providerName="System.Data.SqlServerCe.4.0" /

/connectionStrings

If you want to pass the full connection string as parameter to the context, make sure you set the default connection factory to a SqlCeConnectionFactory instance, by using the following code.

Database.DefaultConnectionFactory = new SqlCeConnectionFactory

("System.Data.SqlServerCe.4.0");

Or by the following configuration.

entityFramework

 defaultConnectionFactory

 type="System.Data.Entity.Infrastructure.SqlCeConnectionFactory, EntityFramework"

 parameters

 parameter value="System.Data.SqlServerCe.4.0" /

 /parameters

 /defaultConnectionFactory

/entityFramework

SQLCE will look for and create a file named database.sdf in the Bin directory of your project.

SQL Server 2012 Express LocalDB

The LocalDB database released with SQL Server 2012 Express and it is also a small footprint, fully featured server that doesn’t use any services. If you don’t have it already, you can download the installer from http://www.microsoft.com/en-us/download/details.aspx?id=29062.

[image:]

Tip: LocalDB will only accept a single connection at a time.

For connecting to a LocalDB instance, you will need a connection string very similar to one you would use to connect to SQL Server, including the provider name. Instead of a SQL Server instance, you specify the version of LocalDB to use.

connectionStrings

 add name="Succinctly"

 connectionString="Data Source=(localdb)v11.0;Integrated Security=SSPI;

 Initial Catalog=Succinctly;MultipleActiveResultSets=true"

 providerName="System.Data.SqlClient" /

/connectionStrings

There is no need to configure a default connection factory since LocalDB uses the same as SQL Server, which is the default.

LocalDB will look for and use a database file named database.mdf and a transaction log database_log.ldf, both located in folder %USERPROFILE%, unless explicitly located somewhere else, by specifying an AttachDBFilename parameter.

connectionStrings

 add name="Succinctly"

 connectionString="Data Source=(localdb)v11.0;Integrated Security=SSPI;

 MultipleActiveResultSets=true;AttachDBFilename=C:WindowsTempSuccinctly.mdf"

 providerName="System.Data.SqlClient" /

/connectionStrings

[image:]

Note: LocalDB files are fully compatible with SQL Server ones.

Chapter 2 Domain Model
Chapter 2 Domain Model

Scenario

Let’s consider the following scenario as the basis for our study.

[image:]

Figure 1: The domain model

You will find all these classes in the accompanying source code. Let’s try to make some sense out of them:

	A Customer has a number of Projects.
	Each Project has a collection of ProjectResources, belongs to a single Customer, and has a ProjectDetail with additional information.
	A ProjectDetail refers to a single Project.
	A ProjectResource always points to an existing Resource and is assigned to a Project with a given Role.
	A Resource knows some Technologies and can be involved in several Projects.
	A Technology can be collectively shared by several Resources.
	Both Customers and Resources have Contact information.

[image:]

Note: You can find the full source code in the following Git repository: https://bitbucket.org/syncfusiontech/entity-framework-code-first-succinctly/overview

Core Concepts
Core Concepts

Before a class model can be used to query a database or to insert values into it, Entity Framework needs to know how it should translate code (classes, properties, and instances) back and forth into the database (specifically, tables, columns and records). For that, it uses a mapping, for which two APIs exist. More on this later, but first, some fundamental concepts.

Contexts

A context is a class that inherits from DbContext and which exposes a number of entity collections in the form of DbSetT properties. Nothing prevents you from exposing all entity types, but normally you only expose aggregate roots, because these are the ones that make sense querying on their own.

An example context might be the following.

public class ProjectsContext : DbContext

{

 public DbSetTool Tools { get; set; }

 public DbSetResource Resources { get; set; }

 public DbSetProject Projects { get; set; }

 public DbSetCustomer Customers { get; set; }

 public DbSetTechnology Technologies { get; set; }

}

[image:]

Tip: Do notice that both setters and getters for the entity collections are public.

[image:]

Note: Feel free to add your own methods, business or others, to the context class.

The DbContext class offers a number of constructors, mostly for configuring the connection string:

	If the no-arguments constructor is called, the DbContext will assume that a connection string with the same name as the context’s class will exist in the configuration file.
	There’s also a constructor that takes a single string parameter. This parameter will either be a full connection string that is specific to the current database provider or a name of a connection string that must be present in the configuration file.
	For the sake of completeness, another constructor exists that takes an existing DbConnection; Entity Framework might not take full control of this connection, for example, it won’t try to dispose of it when no longer needed.

public class ProjectsContext : DbContext

{

 public ProjectsContext() { }

 public ProjectsContext(String nameOrConnectionString): base(nameOrConnectionString)

 { }

 public ProjectsContext(DbConnection existingConnection, Boolean contextOwnsConnection): base(existingConnection, contextOwnsConnection)

 { }

}

If we use the constructor overload that takes a connection string by its name, we must use the format “Name=Some Name”.

public class ProjectsContext : DbContext

{

 public ProjectsContext(String name) : base("Name=AnotherName") { }

}

Entities

At the very heart of the mapping is the concept of entity. An entity is just a class that is mapped to an Entity Framework context and which has an identity, or a property that uniquely identifies instances of it. In DDD parlance, it is said to be an aggregate root if it is meant to be directly queried, think of a Project or a Customer, or an entity if it is loaded together with an aggregate root and not generally considerable on its own, such as project details or customer address. An entity is persisted on its own table and may have any number of business or validation methods.

public class Project

{

 public Project()

 {

 this.ProjectResources = new HashSetProjectResource();

 }

 public Int32 ProjectId { get; set; }

 public String Name { get; set; }

 public DateTime Start { get; set; }

 public DateTime? End { get; set; }

 public virtual ProjectDetail Detail { get; set; }

 public virtual Customer Customer { get; set; }

 public void AddResource(Resource resource, Role role)

 {

 resource.ProjectResources.Add(new ProjectResource()

 { Project = this, Resource = resource, Role = role });

 }

 public Resource ProjectManager

 {

 get

 {

 return (this.ProjectResources.ToList()

 .Where(x = x.Role == Role.ProjectManager)

 .Select(x = x.Resource).SingleOrDefault());

 }

 }

 public IEnumerableResource Developers

 {

 get

 {

 return (this.ProjectResources.Where(x = x.Role == Role.Developer)

 .Select(x = x.Resource).ToList());

 }

 }

 public IEnumerableResource Testers

 {

 get

 {

 return (this.ProjectResources.Where(x = x.Role == Role.Tester)

 .Select(x = x.Resource)).ToList();

 }

 }

 public virtual ICollectionProjectResource ProjectResources { get; protected set;

 }

 public override String ToString()

 {

 return (this.Name);

 }

}

Here you can see some patterns that we will be using throughout the book:

	An entity needs to have at least a public parameter-less constructor.
	An entity always has an identifier property, which has the same name and ends with Id.
	Collections are always generic, have protected setters, and are given a value in the constructor in the form of an actual collection (like HashSetT).
	Calculated properties are used to expose filtered sets of actually persisted properties.
	Business methods are used for enforcing business rules.
	A textual representation of the entity is supplied by overriding ToString.

A domain model where its entities have only properties (data) and no methods (behavior) is sometimes called an anemic domain model. You can find a good description for this anti-pattern on Martin Fowler’s web site: http://www.martinfowler.com/bliki/AnemicDomainModel.html.

Complex Types

A complex type is also a class with some properties and maybe methods, but unlike an entity, it doesn’t have an identity property and doesn’t have its own table for persistence. Instead, its properties are saved into the same table as its declaring type. A complex type is useful for grouping properties that conceptually should always appear together, such as the city, country, street, and zip code in an address. By reusing complex types, we can have the same logic repeated in different entities. Both a customer and a human resource might have contact information with the same structure:

public class ContactInformation

{

 public String Email { get; set; }

 public String Phone { get; set; }

}

public class Resource

{

 public ContactInformation Contact { get; set; }

}

public class Customer

{

Buy "Dive into Entity Framework Code First" in your preferred e-book store and continue reading:

Amazon

AppleiBookstore

buchhandel.de

ebook.de

Thalia

Weltbild

Enjoy your reading!

OEBPS/images/146265098576853311_2.jpg

OEBPS/images/146265098540149079_1.jpg
(sectp)
AL vold Glven()

N T ———
¥ sy YouCannf sk StascrSemleClass YouCamnot akeASaticClas' S types cannct be i 3 ype aguments

OEBPS/images/146265098526332951_1.jpg
(sectp)
AL vold Glven()

N T ———
¥ sy YouCannf sk StascrSemleClass YouCamnot akeASaticClas' S types cannct be i 3 ype aguments

OEBPS/images/146265098591053562_2.jpg
X8 OIBE # 51 (3~ | edormte > P by s ity

1 Frm YouWilGethnEaception faled

iy st

OEBPS/images/cover.jpeg
Bill Por{éG

Dive{gq?o cntity

-7 work Code First

OEBPS/images/146265098522003095_1.jpg
(sectp)
AL vold Glven()

N T ———
¥ sy YouCannf sk StascrSemleClass YouCamnot akeASaticClas' S types cannct be i 3 ype aguments

OEBPS/images/14626509859219930_3.jpg

OEBPS/images/146265098590853385_2.jpg
(sectp)
AL vold Glven()

N T ———
¥ sy YouCannf sk StascrSemleClass YouCamnot akeASaticClas' S types cannct be i 3 ype aguments

OEBPS/images/146265098560108266_2.jpg

OEBPS/images/146265098593331107_1.jpg
(sectp)
AL vold Glven()

N T ———
¥ sy YouCannf sk StascrSemleClass YouCamnot akeASaticClas' S types cannct be i 3 ype aguments

